domingo, 8 de mayo de 2011

Que es un triangulo oblicuángulo?
Un triangulo oblicuángulo es un triangulo que NO tiene ningún ángulo a 90 grados. En pocas palabras, puede ser un triangulo de todos los tipos excepto un triangulo rectángulo (y sus propiedades, ángulos y lados, puedes ser calculados utilizando el seno, coseno, tangente, Y NO el teorema de Pitágoras).,
Un triángulo, en geometría, es un polígono determinado por tres rectas que se cortan dos a dos en tres puntos (que no se encuentran alineados). Los puntos de intersección de las rectas son los vértices y los segmentos de recta determinados son los lados del triángulo. Dos lados contiguos forman uno de los ángulos interiores del triángulo.
Por lo tanto, un triángulo tiene 3 ángulos interiores, 3 lados y 3 vértices.
Si está contenido en una superficie plana se denomina triángulo, o trígono, un nombre menos común para este tipo de polígonos. Si está contenido en una superficie esférica se denomina triángulo esférico. Representado, en cartografía, sobre la superficie terrestre, se llama triángulo geodésico.



Ley de los senos
La ley de los Senos es una relación de tres igualdades que siempre se cumplen entre los lados y ángulos de un triángulo cualquiera, y que es útil para resolver ciertos tipos de problemas de triángulos.
La ley de los Senos dice así:
donde A, B y C (mayúsculas) son los lados del triángulo, y a, b y c (minúsculas) son los ángulos del triángulo:
Observa que las letras minúsculas de los ángulos no están pegadas a su letra mayúscula. O sea, la a está en el ángulo opuesto de A. La b está en el ángulo opuesto de B. Y la c está en el ángulo opuesto de C. Siempre debe ser así cuando resuelvas un triángulo. Si no lo haces así, el resultado seguramente te saldrá mal.
Resolución de triángulos por la ley de los Senos
Resolver un triángulo significa encontrar todos los datos que te faltan, a partir de los datos que te dan (que generalmente son tres datos).
*Nota: No todos los problemas de resolución de triángulos se pueden resolver con la ley de los senos. A veces, por los datos que te dan, sólo la ley de los cosenos lo puede resolver.
En general, si en un problema de triángulos te dan como datos 2 ángulos y un lado, usa ley de los senos.
Si por el contrario te dan dos lados y el ángulo que hacen esos dos lados, usa la ley del coseno.
Supóngamos que te ponen el siguiente problema:
Resolver el triángulo siguiente:
Llamemos b al ángulo de 27° porque está opuesto al lado B; a al ángulo de 43° y A al lado de 5.
Lo que tenemos entónces es lo siguiente:
A = 5
B = ?
C = ?
a = 43°
b = 27°
c = ?
El ángulo c es muy fácil de encontrar, porque la suma de los ángulos internos de un triángulo siempre suma 180°. O sea que cuando te den dos ángulos de un triángulo, el tercero siempre sale así:
c = 180° - a - b
Esta fórmula es válida para cualquier triángulo. Así que apréndetela bien o apúntala por ahí porque la usarás muchísimo en matemáticas.
Sustituimos en ésta expresión los ángulos que nos dan y queda así:
c = 180° -43°- 27° = 180° - 70° = 110°
c= 110°
Ya tenemos entónces los tres ángulos a, b y c.
Para encontrar los lados faltantes usamos la ley de los senos:
sustituyendo queda:
Nos fijamos ahora sólo en los dos primeros términos:
haremos de cuenta como que el tercer término, (la que tiene la C) no existe ahorita, de la igualdad que está en el recuadro se puede despejar la B, (como el sen (27°) está dividiendo abajo, pasa del lado izquierdo multiplicando arriba):
y calculamos ésta expresión:
3.32838 = B
y esto es lo que vale B.
Ya nada más falta calcular C. Para ello, volvemos a usar la ley de los Senos, pero ahora si nos vamos a fijar en una igualdad que tenga a la C:
(Observa que ya sustituimos el valor de la B en la igualdad.)
Despejemos la C, (como sen (110°) está dividiendo abajo, pasa del lado izquierdo multiplicando arriba):
hacemos las operaciones y queda:
6.88925 = C
y con este resultado ya queda resuelto todo el triángulo.
Nota que si en lugar de haber usado la igualdad de la derecha hubiéramos usado la de los extremos, el resultado habría sido exactamente el mismo:
o escrito ya sin el término de en medio:
igual despejamos la C, (como sen (110°) está dividiendo abajo, pasa del lado izquierdo multiplicando arriba):
y si haces las operaciones verás que te dá C = 6.88925 igual que antes





Ley del coseno

La ley de los Coseno es una expresión que te permite conocer un lado de un triángulo cualquiera, si conoces los otros dos y el ángulo opuesto al lado que quieres conocer. Esta relación es útil para resolver ciertos tipos de problemas de triángulos.
La ley del Coseno dice así:
y si lo que te dan son los lados, y te piden el ángulo que hacen los lados B y C, entónces dice así:
donde A, B y C (mayúsculas) son los lados del triángulo, y a, b y c (minúsculas) son los ángulos del triángulo:
Observa que las letras minúsculas de los ángulos no están pegadas a su letra mayúscula. O sea, la a está en el ángulo opuesto de A. La b está en el ángulo opuesto de B. Y la c está en el ángulo opuesto de C. Siempre debe ser así cuando resuelvas un triángulo. Si no lo haces así, el resultado seguramente te saldrá mal.
Observa que la ley del coseno es útil sólo si te dan los dos lados que te faltan y el ángulo opuesto al lado que buscas, o sea estos:
Dicho en otras palabras: te tienen que dar los lados y el ángulo que hacen los lados. Si no te dan el ángulo que hacen los lados, entonces tienes que usar la ley de los senos.
Resolución de triángulos por la ley del Coseno
Resolver un triángulo significa encontrar todos los datos que te faltan, a partir de los datos que te dan (que generalmente son tres datos).
*Nota: No todos los problemas de resolución de triángulos se pueden resolver con la ley del coseno. A veces, por los datos que te dan, sólo la ley de los senos lo puede resolver.
En general, si en un problema de triángulos te dan como datos 2 ángulos y un lado, usa ley de los senos.
Si por el contrario te dan dos lados y el ángulo que forman esos lados, usa ley de los cosenos.
Supóngamos que te ponen el siguiente problema:
Resolver el triángulo siguiente:
llamemos a al ángulo de 25° porque está opuesto al lado A; C al lado que mide 12 porque está opuesto al ángulo c. y B al lado de 9 porque está opuesto al lado b.
Lo que tenemos entónces es lo siguiente:
A = ?
B = 9
C = 12
a = 25°
b = ?
c = ?
Usando la ley del coseno tenemos sustituyendo:
realizando las operaciones queda:
A = 5.4071
Para encontrar los ángulos faltantes usaremos la ley de los senos, :
Sustituyendo los datos del problema y el valor de A que acabamos de encontrar queda:
Para encontrar el ángulo b, vamos a fijarnos en la primera igualdad:
de ésta igualdad despeja el ángulo b (una forma rápida de despejar cuando lo que queremos despejar está abajo, es como sigue:
invierte primero los quebrados - lo de arriba pásalo abajo y lo de abajo pásalo arriba-:
luego, lo que está dividiendo al sen(b) abajo, pásalo multiplicando arriba del otro lado.
y así es más rápido.)
haciendo las operaciones nos queda:
inviértelo para que quede bien escrito:
sen (b) = 0.7034297712
y saca la función inversa del seno (el arcoseno):
b = sen-1 (0.7034297712)
b = 44. 703 = 44° 42'
El ángulo c es ahora muy fácil de encontrar, porque la suma de los ángulos internos de un triángulo siempre suma 180°. O sea que cuando tengas dos ángulos de un triángulo, el tercero siempre sale así:
c = 180° - a - b
Esta fórmula es válida para cualquier triángulo. Así que apréndetela bien o apúntala por ahí porque la usarás muchísimo en matemáticas.
Sustituimos en ésta expresión los ángulos que nos dan y queda así:
c = 180° -25°- 44°42' = 180° - 69°42' = 110°17'
c= 110°17'
y con este resultado ya queda resuelto todo el triángulo.

, cuales son las funciones trigonometricas y 5 aplicaciones en la vida y 5 aplicaciones de las leyes trigonometricas, qe es trigonometria y 5 aplicaciones





ley de las tangentes
Supóngase que a, b, c representan las longitudes de los tres lados de un triángulo y A, B, C representan los ángulos opuestos a estos tres lados. Entonces la ley de las tangentes establece que
(a-b)/(a+b) = tan[(1/2)(A-B)]/tan[(1/2)(A+B)]
(b-c)/(b+c) = tan[(1/2)(B-C)]/tan[(1/2)(B+C)]
(c-a)/(c+a) = tan[(1/2)(C-A)]/tan[(1/2)(C+A)]


Teorema de la tangente o ley de la tangente
Si A y B son ángulos de un triángulo y sus lados correspondientes son a y b, se cumple que:



Aplicaciones de las leyes trigonometricas

La trigonometría es la rama de las matemáticas que estudia las relaciones entre los ángulos y los lados de los triángulos. Para esto se vale de las razones trigonométricas, las cuales son utilizadas frecuentemente en cálculos técnicos


Aplicar las leyes de senos y cósenos para la resolución de problemas.
Ejemplo: Quieres encontrar la ubicación de una montaña tomando medidas desde dos puntos que se encuentran a 3 millas uno de otro. Desde el primer punto, el ángulo formado entre la montaña y el segundo punto es 78º. Desde el segundo punto, el ángulo formado entre la montaña y el primer punto es 53º


Convertir medidas de grados a radianes.
Ejemplo: Convertir 90º, 45º, y 30º a radianes


Resolver problemas que involucren aplicaciones de funciones trigonométricas.
Ejemplo: En Indiana, la duración del día varía a lo largo del año en una curva senoidal. El día más largo dura 14 horas y es el día 175 y el día más corto dura 10 horas y es el día 355.



TRIGONOMETRIA

Las razones trigonométricas: Seno, Coseno, Tangente
En trigonometría, las principales razones trigonométricas son tres: la Tangente, la razón entre los catetos opuesto y adyacente; el Seno, la razón entre el cateto opuesto y la hipotenusa; y el Coseno, la razón entre el cateto adyacente y la hipotenusa. Estas razones trigonométricas se pueden aplicar para resolver operaciones con triángulos rectángulos, junto con el Teorema de Pitágoras.
La trigonometría es una rama de la matemática, cuyo significado etimológico es "la medición de los triángulos". Deriva de los términos griegos τριγωνο trigōno triángulo y μετρον metron medida.[1]

En términos generales, la trigonometría es el estudio de las funciones seno, coseno; tangente, cotangente; secante y cosecante. Interviene directa o indirectamente en las demás ramas de la matemática y se aplica en todos aquellos ámbitos donde se requieren medidas de precisión. La trigonometría se aplica a otras ramas de la geometría, como es el caso del estudio de las esferas en la geometría del espacio.

Posee numerosas aplicaciones: las técnicas de triangulación, por ejemplo, son usadas en astronomía para medir distancias a estrellas próximas, en la medición de distancias entre puntos geográficos, y en sistemas de navegación por satélites



Aplicaciones:
La posición de objeto (barcos, aviones, islas, ....antes del GPS)
Con el ángulo de elección o declive y la altura se puede obtener la distancia.

La altura de un objeto (grannnndeeeee p.e. chimeneas, pirámides, monumentos)
Con el ángulo de elección y distancia al objeto se puede obtener la altura.

La acústica y otros temas relacionados con el sonido.
Las ondas sonoras pueden expresarse como una combinación de funciones trigonométricas, generalmente senos o cosenos (descomposición de frecuencias) y a cada nota musical le corresponde una combinación única.





http://www.mathematicsdictionary.com/spanish/vmd/full/l/lawoftangents.htm

http://espanol.answers.yahoo.com/question/index?qid=20090710081646AAbWRcI

http://es.wikipedia.org/wiki/Trigonometr%C3%ADa

http://html.rincondelvago.com/trigonometria_14.html

No hay comentarios:

Publicar un comentario en la entrada